Eating more sardines instead of fish oil supplementation: Beyond omega-3 polyunsaturated fatty acids, a matrix of nutrients with cardiovascular benefits (2024)

1. Wu JH, Micha R, Imamura F, Pan A, Biggs ML, Ajaz O, et al.. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br J Nutr. (2012) 107:S214–27. doi: 10.1017/S0007114512001602, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Mori TA. Omega-3 fatty acids and hypertension in humans. Clin Exp Pharmacol Physiol. (2006) 33:842–6. doi: 10.1111/j.1440-1681.2006.04451.x, PMID: [PubMed] [CrossRef] [Google Scholar]

3. Scorletti E, Byrne CD. Omega-3 fatty acids and non-alcoholic fatty liver disease: evidence of efficacy and mechanism of action. Mol Asp Med. (2018) 64:135–46. doi: 10.1016/j.mam.2018.03.001, PMID: [PubMed] [CrossRef] [Google Scholar]

4. McKenney JM, Sica D. Role of prescription omega-3 fatty acids in the treatment of hypertriglyceridemia. Pharmacotherapy. (2007) 27:715–28. doi: 10.1592/phco.27.5.715, PMID: [PubMed] [CrossRef] [Google Scholar]

5. Santos HO, Price JC, Bueno AA. Beyond fish oil supplementation: the effects of alternative plant sources of Omega-3 polyunsaturated fatty acids upon lipid indexes and Cardiometabolic biomarkers-an overview. Nutrients. (2020) 12:3159. doi: 10.3390/nu12103159, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Siriwardhana N, Kalupahana NS, Moustaid-Moussa N. Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Adv Food Nutr Res. (2012) 65:211–22. doi: 10.1016/B978-0-12-416003-3.00013-5, PMID: [PubMed] [CrossRef] [Google Scholar]

7. Metcalf RG, James MJ, Gibson RA, Edwards JR, Stubberfield J, Stuklis R, et al.. Effects of fish-oil supplementation on myocardial fatty acids in humans. Am J Clin Nutr. (2007) 85:1222–8. doi: 10.1093/ajcn/85.5.1222, PMID: [PubMed] [CrossRef] [Google Scholar]

8. Lee JH, O'Keefe JH, Lavie CJ, Harris WS. Omega-3 fatty acids: cardiovascular benefits, sources and sustainability. Nat Rev Cardiol. (2009) 6:753–8. doi: 10.1038/nrcardio.2009.188, PMID: [PubMed] [CrossRef] [Google Scholar]

9. Harris WS. Fish oil supplementation: evidence for health benefits. Cleve Clin J Med. (2004) 71:208–210, 212. doi: 10.3949/ccjm.71.3.208, PMID: [PubMed] [CrossRef] [Google Scholar]

10. Volpe M, Chin D, Paneni F. The challenge of polypharmacy in cardiovascular medicine. Fundam Clin Pharmacol. (2010) 24:9–17. doi: 10.1111/j.1472-8206.2009.00757.x, PMID: [PubMed] [CrossRef] [Google Scholar]

11. Newman J, Grobman WA, Greenland P. Combination polypharmacy for cardiovascular disease prevention in men: a decision analysis and cost-effectiveness model. Prev Cardiol. (2008) 11:36–41. doi: 10.1111/j.1520-037x.2007.06423.x, PMID: [PubMed] [CrossRef] [Google Scholar]

12. Louis C, Yannopoulos G. The transposable elements involved in hybrid dysgenesis in Drosophila melanogaster. Oxf Surv Eukaryot Genes. (1988) 5:205–50. [PubMed] [Google Scholar]

13. Abolbashari M, Macaulay TE, Whayne TF, Mukherjee D, Saha S. Polypharmacy in cardiovascular medicine: problems and promises!Cardiovasc Hematol Agents Med Chem. (2017) 15:31–9. doi: 10.2174/1871525715666170529093442, PMID: [PubMed] [CrossRef] [Google Scholar]

14. Appel LJ, Miller ER, 3rd, Seidler AJ, Whelton PK. Does supplementation of diet with 'fish oil' reduce blood pressure? A meta-analysis of controlled clinical trials. Arch Intern Med. (1993) 153:1429–38. doi: 10.1001/archinte.1993.00410120017003 [PubMed] [CrossRef] [Google Scholar]

15. Nichols PD, Petrie J, Singh S. Long-chain omega-3 oils-an update on sustainable sources. Nutrients. (2010) 2:572–85. doi: 10.3390/nu2060572, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Helland A, Bratlie M, Hagen IV, Mjos SA, Sornes S, Ingvar Halstensen A, et al.. High intake of fatty fish, but not of lean fish, improved postprandial glucose regulation and increased the n-3 PUFA content in the leucocyte membrane in healthy overweight adults: a randomised trial. Br J Nutr. (2017) 117:1368–78. doi: 10.1017/S0007114517001234, PMID: [PubMed] [CrossRef] [Google Scholar]

17. Rajaram S, Haddad EH, Mejia A, Sabate J. Walnuts and fatty fish influence different serum lipid fractions in normal to mildly hyperlipidemic individuals: a randomized controlled study. Am J Clin Nutr. (2009) 89:1657S–63S. doi: 10.3945/ajcn.2009.26736S, PMID: [PubMed] [CrossRef] [Google Scholar]

18. Torris C, Molin M, Smastuen MC. Lean fish consumption is associated with beneficial changes in the metabolic syndrome components: a 13-year follow-up study from the Norwegian Tromso study. Nutrients. (2017) 9:247. doi: 10.3390/nu9030247, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Patin RV, Vitolo MR, Valverde MA, Carvalho PO, Pastore GM, Lopez FA. The influence of sardine consumption on the omega-3 fatty acid content of mature human milk. J Pediatr. (2006) 82:63–9. doi: 10.2223/JPED.1439, PMID: [PubMed] [CrossRef] [Google Scholar]

20. Bispo P, Batista I, Bernardino RJ, Bandarra NM. Preparation of triacylglycerols rich in omega-3 fatty acids from sardine oil using a Rhizomucor miehei lipase: focus in the EPA/DHA ratio. Appl Biochem Biotechnol. (2014) 172:1866–81. doi: 10.1007/s12010-013-0616-1, PMID: [PubMed] [CrossRef] [Google Scholar]

21. Castro Gonzalez MI, Perez-Gil Romo F, Carranco Jauregui ME, Montano Benavides S, Silencio Barrita JL. Vitamins and minerals from sardine in tomato sauce, from the Mexican Pacific fish zones. Arch Latinoam Nutr. (1999) 49:379–83. [PubMed] [Google Scholar]

22. Simat V, Hamed I, Petricevic S, Bogdanovic T. Seasonal changes in free amino acid and fatty acid compositions of sardines, Sardina pilchardus (Walbaum, 1792): implications for nutrition. Foods. (2020) 9:867. doi: 10.3390/foods9070867, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Rimm EB, Appel LJ, Chiuve SE, Djousse L, Engler MB, Kris-Etherton PM, et al.. Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: a science advisory from the American Heart Association. Circulation. (2018) 138:e35–47. doi: 10.1161/CIR.0000000000000574, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al.. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task Force of the European Society of Cardiology and Other Societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts)developed with the special contribution of the European Association for Cardiovascular Prevention & rehabilitation (EACPR). Eur Heart J. (2016) 37:2315–81. doi: 10.1093/eurheartj/ehw106, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Diaz-Rizzolo DA, Serra A, Colungo C, Sala-Vila A, Siso-Almirall A, Gomis R. Type 2 diabetes preventive effects with a 12-months sardine-enriched diet in elderly population with prediabetes: an interventional, randomized and controlled trial. Clin Nutr. (2021) 40:2587–98. doi: 10.1016/j.clnu.2021.03.014, PMID: [PubMed] [CrossRef] [Google Scholar]

26. Balfego M, Canivell S, Hanzu FA, Sala-Vila A, Martinez-Medina M, Murillo S, et al.. Effects of sardine-enriched diet on metabolic control, inflammation and gut microbiota in drug-naive patients with type 2 diabetes: a pilot randomized trial. Lipids Health Dis. (2016) 15:78. doi: 10.1186/s12944-016-0245-0, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Misselwitz B, Pohl D, Fruhauf H, Fried M, Vavricka SR, Fox M. Lactose malabsorption and intolerance: pathogenesis, diagnosis and treatment. United European Gastroenterol J. (2013) 1:151–9. doi: 10.1177/2050640613484463, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Plantz MA, Bittar K. Dietary Calcium. Treasure Island, FL: StatPearls; (2021) eng. [Google Scholar]

29. USDA . National Nutrient Database for standard reference. (2018). Available at: https://fdc.nal.usda.gov/ (Accessed January 20, 2022).

30. Penther P, Boschat J, Etienne Y, Le Potier J, Gilard M. Tight calcified aortic valve stenosis in adults aged from 50 to 69. Anatomical study of 50 cases. Arch Mal Coeur Vaiss. (1988) 81:149–55. [Les stenoses aortiques orificielles serrees et calcifiees de l'adulte de 50 a 69 ans. Etude anatomique de 50 observations. [PubMed] [Google Scholar]

31. Dewenter M, von der Lieth A, Katus HA, Backs J. Calcium signaling and transcriptional regulation in Cardiomyocytes. Circ Res. (2017) 121:1000–20. doi: 10.1161/CIRCRESAHA.117.310355, PMID: [PubMed] [CrossRef] [Google Scholar]

32. Marks AR. Calcium and the heart: a question of life and death. J Clin Invest. (2003) 111:597–600. doi: 10.1172/JCI18067, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Allgrove J. Physiology of calcium, phosphate, magnesium and vitamin D. Endocr Dev. (2015) 28:7–32. doi: 10.1159/000380990, PMID: [PubMed] [CrossRef] [Google Scholar]

34. Mimouni FB, Mandel D, Lubetzky R, Senterre T. Calcium, phosphorus, magnesium and vitamin D requirements of the preterm infant. World Rev Nutr Diet. (2014) 110:140–51. doi: 10.1159/000358463, PMID: [PubMed] [CrossRef] [Google Scholar]

35. Gutierrez OM. The connection between dietary phosphorus, cardiovascular disease, and mortality: where we stand and what we need to know. Adv Nutr. (2013) 4:723–9. doi: 10.3945/an.113.004812, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Surdu AM, Pinzariu O, Ciobanu DM, Negru AG, Cainap SS, Lazea C, et al.. Vitamin D and its role in the lipid metabolism and the development of atherosclerosis. Biomedicine. (2021) 9:172. doi: 10.3390/biomedicines9020172., PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Severino P, Netti L, Mariani MV, Maraone A, D'Amato A, Scarpati R, et al.. Prevention of cardiovascular disease: screening for magnesium deficiency. Cardiol Res Pract. (2019) 2019:1–10. doi: 10.1155/2019/4874921, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Minihane AM, Armah CK, Miles EA, Madden JM, Clark AB, Caslake MJ, et al.. Consumption of fish oil providing amounts of Eicosapentaenoic acid and Docosahexaenoic acid that can be obtained from the diet reduces blood pressure in adults with systolic hypertension: a retrospective analysis. J Nutr. (2016) 146:516–23. doi: 10.3945/jn.115.220475, PMID: [PubMed] [CrossRef] [Google Scholar]

39. Mori TA, Vandongen R, Beilin LJ, Burke V, Morris J, Ritchie J. Effects of varying dietary fat, fish, and fish oils on blood lipids in a randomized controlled trial in men at risk of heart disease. Am J Clin Nutr. (1994) 59:1060–8. doi: 10.1093/ajcn/59.5.1060, PMID: [PubMed] [CrossRef] [Google Scholar]

40. Santos HO, Teixeira FJ, Schoenfeld BJ. Dietary vs. pharmacological doses of zinc: a clinical review. Clin Nutr. (2019) 39:1345–53. doi: 10.1016/j.clnu.2019.06.024, PMID: [PubMed] [CrossRef] [Google Scholar]

41. Santos HO, Kones R, Rumana U, Earnest CP, Izidoro LFM, Macedo RCO. Lipoprotein(a): current evidence for a physiologic role and the effects of Nutraceutical strategies. Clin Ther. (2019) 41:1780–97. doi: 10.1016/j.clinthera.2019.06.002, PMID: [PubMed] [CrossRef] [Google Scholar]

42. Houston MC. The importance of potassium in managing hypertension. Curr Hypertens Rep. (2011) 13:309–17. doi: 10.1007/s11906-011-0197-8, PMID: [PubMed] [CrossRef] [Google Scholar]

43. Zhang X, Li Y, Del Gobbo LC, Rosanoff A, Wang J, Zhang W, et al.. Effects of magnesium supplementation on blood pressure: a meta-analysis of randomized double-blind placebo-controlled trials. Hypertension. (2016) 68:324–33. doi: 10.1161/HYPERTENSIONAHA.116.07664, PMID: [PubMed] [CrossRef] [Google Scholar]

44. Ganji SH, Kamanna VS, Kashyap ML. Niacin and cholesterol: role in cardiovascular disease (review). J Nutr Biochem. (2003) 14:298–305. doi: 10.1016/S0955-2863(02)00284-X, PMID: [PubMed] [CrossRef] [Google Scholar]

45. Lanham-New SA, Lambert H, Frassetto L. Potassium. Adv Nutr. (2012) 3:820–1. doi: 10.3945/an.112.003012, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Ekmekcioglu C, Elmadfa I, Meyer AL, Moeslinger T. The role of dietary potassium in hypertension and diabetes. J Physiol Biochem. (2016) 72:93–106. doi: 10.1007/s13105-015-0449-1, PMID: [PubMed] [CrossRef] [Google Scholar]

47. Leung AA, Nerenberg K, Daskalopoulou SS, McBrien K, Zarnke KB, Dasgupta K, et al.. Hypertension Canada's 2016 Canadian hypertension education program guidelines for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol. (2016) 32:569–88. doi: 10.1016/j.cjca.2016.02.066, PMID: [PubMed] [CrossRef] [Google Scholar]

48. Vinceti M, Filippini T, Crippa A, de Sesmaisons A, Wise LA, Orsini N. Meta-analysis of potassium intake and the risk of stroke. J Am Heart Assoc. (2016) 5. doi: 10.1161/JAHA.116.004210, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Castro H, Raij L. Potassium in hypertension and cardiovascular disease. Semin Nephrol. (2013) 33:277–89. doi: 10.1016/j.semnephrol.2013.04.008, PMID: [PubMed] [CrossRef] [Google Scholar]

50. Czerwonka M, Tokarz A. Iron in red meat-friend or foe. Meat Sci. (2017) 123:157–65. doi: 10.1016/j.meatsci.2016.09.012, PMID: [PubMed] [CrossRef] [Google Scholar]

51. Institute of Medicine (US) . Dietary Reference Intakes For Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): The National Academies Press. (2001). [PubMed] [Google Scholar]

52. von Haehling S, Jankowska EA, van Veldhuisen DJ, Ponikowski P, Anker SD. Iron deficiency and cardiovascular disease. Nat Rev Cardiol. (2015) 12:659–69. doi: 10.1038/nrcardio.2015.109, PMID: [PubMed] [CrossRef] [Google Scholar]

53. Zacharski LR, Chow BK, Howes PS, Shamayeva G, Baron JA, Dalman RL, et al.. Reduction of iron stores and cardiovascular outcomes in patients with peripheral arterial disease: a randomized controlled trial. JAMA. (2007) 297:603–10. doi: 10.1001/jama.297.6.603, PMID: [PubMed] [CrossRef] [Google Scholar]

54. Geissler C, Singh M. Iron, meat and health. Nutrients. (2011) 3:283–316. doi: 10.3390/nu3030283, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Xu YJ, Arneja AS, Tappia PS, Dhalla NS. The potential health benefits of taurine in cardiovascular disease. Exp Clin Cardiol. (2008) 13:57–65. [PMC free article] [PubMed] [Google Scholar]

56. Wu G, Meininger CJ. Arginine nutrition and cardiovascular function. J Nutr. (2000) 130:2626–9. doi: 10.1093/jn/130.11.2626, PMID: [PubMed] [CrossRef] [Google Scholar]

57. Santos HO, Tinsley GM, da Silva GAR, Bueno AA. Pharmaconutrition in the clinical management of COVID-19: a lack of evidence-based research but clues to personalized prescription. J Pers Med. (2020) 10:145. doi: 10.3390/jpm10040145, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Vasdev S, Gill V. The antihypertensive effect of arginine. Int J Angiol. (2008) 17:07–22. doi: 10.1055/s-0031-1278274, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Gokce N. L-arginine and hypertension. J Nutr. (2004) 134:2807S–11S. doi: 10.1093/jn/134.10.2807S, PMID: [PubMed] [CrossRef] [Google Scholar]

60. Gouvea SA, Bissoli NS, Moyses MR, Cicilini MA, Pires JG, Abreu GR. Activity of angiotensin-converting enzyme after treatment with L-arginine in renovascular hypertension. Clin Exp Hypertens. (2004) 26:569–79. doi: 10.1081/CEH-200031837, PMID: [PubMed] [CrossRef] [Google Scholar]

61. King DE, Mainous AG, 3rd, Geesey ME. Variation in L-arginine intake follow demographics and lifestyle factors that may impact cardiovascular disease risk. Nutr Res. (2008) 28:21–4. doi: 10.1016/j.nutres.2007.11.003, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Venho B, Voutilainen S, Valkonen VP, Virtanen J, Lakka TA, Rissanen TH, et al.. Arginine intake, blood pressure, and the incidence of acute coronary events in men: the Kuopio Ischaemic heart disease risk factor study. Am J Clin Nutr. (2002) 76:359–64. doi: 10.1093/ajcn/76.2.359, PMID: [PubMed] [CrossRef] [Google Scholar]

63. Oomen CM, van Erk MJ, Feskens EJ, Kok FJ, Kromhout D. Arginine intake and risk of coronary heart disease mortality in elderly men. Arterioscler Thromb Vasc Biol. (2000) 20:2134–9. doi: 10.1161/01.ATV.20.9.2134, PMID: [PubMed] [CrossRef] [Google Scholar]

64. Dong JY, Qin LQ, Zhang Z, Zhao Y, Wang J, Arigoni F, et al.. Effect of oral L-arginine supplementation on blood pressure: a meta-analysis of randomized, double-blind, placebo-controlled trials. Am Heart J. (2011) 162:959–65. doi: 10.1016/j.ahj.2011.09.012, PMID: [PubMed] [CrossRef] [Google Scholar]

65. Inam UL, Piao F, Aadil RM, Suleman R, Li K, Zhang M, et al.. Ameliorative effects of taurine against diabetes: a review. Amino Acids. (2018) 50:487–502. doi: 10.1007/s00726-018-2544-4, PMID: [PubMed] [CrossRef] [Google Scholar]

66. Militante JD, Lombardini JB. Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids. (2002) 23:381–93. doi: 10.1007/s00726-002-0212-0, PMID: [PubMed] [CrossRef] [Google Scholar]

67. Zhang M, Bi LF, Fang JH, Su XL, Da GL, Kuwamori T, et al.. Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects. Amino Acids. (2004) 26:267–71. doi: 10.1007/s00726-003-0059-z, PMID: [PubMed] [CrossRef] [Google Scholar]

68. Schaffer SW, Azuma J, Mozaffari M. Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol. (2009) 87:91–9. doi: 10.1139/Y08-110, PMID: [PubMed] [CrossRef] [Google Scholar]

69. Jong CJ, Sandal P, Schaffer SW. The role of Taurine in mitochondria health: more than just an antioxidant. Molecules (Basel, Switzerland). (2021) 26:4913. doi: 10.3390/molecules26164913, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Jong CJ, Azuma J, Schaffer S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids. (2012) 42:2223–32. doi: 10.1007/s00726-011-0962-7, PMID: [PubMed] [CrossRef] [Google Scholar]

71. Oliveira MW, Minotto JB, de Oliveira MR, Zanotto-Filho A, Behr GA, Rocha RF, et al.. Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol Rep. (2010) 62:185–93. doi: 10.1016/S1734-1140(10)70256-5, PMID: [PubMed] [CrossRef] [Google Scholar]

72. Sun Q, Wang B, Li Y, Sun F, Li P, Xia W, et al.. Taurine supplementation lowers blood pressure and improves vascular function in prehypertension. Monograph (American Heart Association). (2016) 67:541–9. doi: 10.1161/HYPERTENSIONAHA.115.06624, PMID: [PubMed] [CrossRef] [Google Scholar]

73. Murakami S, Kondo Y, Toda Y, Kitajima H, Kameo K, Sakono M, et al.. Effect of taurine on cholesterol metabolism in hamsters: up-regulation of low density lipoprotein (LDL) receptor by taurine. Life Sci. (2002) 70:2355–66. doi: 10.1016/S0024-3205(02)01507-2, PMID: [PubMed] [CrossRef] [Google Scholar]

74. Chang TY, Li BL, Chang CC, Urano Y. Acyl-coenzyme a:cholesterol acyltransferases. Am J Physiol Endocrinol Metab. (2009) 297:E1–9. doi: 10.1152/ajpendo.90926.2008, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Pullinger CR, Eng C, Salen G, Shefer S, Batta AK, Erickson SK, et al.. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest. (2002) 110:109–17. doi: 10.1172/JCI0215387, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Carneiro EM, Latorraca MQ, Araujo E, Beltra M, Oliveras MJ, Navarro M, et al.. Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem. (2009) 20:503–11. doi: 10.1016/j.jnutbio.2008.05.008, PMID: [PubMed] [CrossRef] [Google Scholar]

77. Laidlaw SA, Grosvenor M, Kopple JD. The taurine content of common foodstuffs. JPEN J Parenter Enteral Nutr. (1990) 14:183–8. doi: 10.1177/0148607190014002183, PMID: [PubMed] [CrossRef] [Google Scholar]

78. Stapleton PP, Charles RP, Redmond HP, Bouchier-Hayes DJ. Taurine and human nutrition. Clin Nutr. (1997) 16:103–8. doi: 10.1016/S0261-5614(97)80234-8, PMID: [PubMed] [CrossRef] [Google Scholar]

79. Waldron M, Patterson SD, Tallent J, Jeffries O. The effects of Oral Taurine on resting blood pressure in humans: a meta-analysis. Curr Hypertens Rep. (2018) 20:81. doi: 10.1007/s11906-018-0881-z, PMID: [PubMed] [CrossRef] [Google Scholar]

80. Mozaffarian D, Shi P, Morris JS, Spiegelman D, Grandjean P, Siscovick DS, et al.. Mercury exposure and risk of cardiovascular disease in two U.S. cohorts. N Engl J Med. (2011) 364:1116–25. doi: 10.1056/NEJMoa1006876, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Gochfeld M, Burger J. Mercury interactions with selenium and sulfur and the relevance of the se:hg molar ratio to fish consumption advice. Environ Sci Pollut Res Int. (2021) 28:18407–20. doi: 10.1007/s11356-021-12361-7, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Bode A, Carrera P, González-Nuevo G, Nogueira E, Riveiro I, Santos MB. A trophic index for sardine (Sardina pilchardus) and its relationship to population abundance in the southern Bay of Biscay and adjacent waters of the NE Atlantic. Prog Oceanogr. (2018) 166:139–47. doi: 10.1016/j.pocean.2017.08.005 [CrossRef] [Google Scholar]

83. Lescord GL, Johnston TA, Branfireun BA, Gunn JM. Percentage of methylmercury in the muscle tissue of freshwater fish varies with body size and age and among species. Environ Toxicol Chem. (2018) 37:2682–91. doi: 10.1002/etc.4233, PMID: [PubMed] [CrossRef] [Google Scholar]

84. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al.. Retraction and republication: primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. (2018) 378:2441–2. doi: 10.1056/NEJMc1806491, PMID: [PubMed] [CrossRef] [Google Scholar]

85. Downer MK, Martinez-Gonzalez MA, Gea A, Stampfer M, Warnberg J, Ruiz-Canela M, et al.. Mercury exposure and risk of cardiovascular disease: a nested case-control study in the PREDIMED (PREvention with MEDiterranean diet) study. BMC Cardiovasc Disord. (2017) 17:9. doi: 10.1186/s12872-016-0435-8, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Sala-Vila A, Harris WS, Cofan M, Perez-Heras AM, Pinto X, Lamuela-Raventos RM, et al.. Determinants of the omega-3 index in a Mediterranean population at increased risk for CHD. Br J Nutr. (2011) 106:425–31. doi: 10.1017/S0007114511000171, PMID: [PubMed] [CrossRef] [Google Scholar]

87. Aarsetoey H, Aarsetoey R, Lindner T, Staines H, Harris WS, Nilsen DW. Low levels of the omega-3 index are associated with sudden cardiac arrest and remain stable in survivors in the subacute phase. Lipids. (2011) 46:151–61. doi: 10.1007/s11745-010-3511-3, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Harris WS, Del Gobbo L, Tintle NL. The Omega-3 index and relative risk for coronary heart disease mortality: estimation from 10 cohort studies. Atherosclerosis. (2017) 262:51–4. doi: 10.1016/j.atherosclerosis.2017.05.007, PMID: [PubMed] [CrossRef] [Google Scholar]

89. Langlois K, Ratnayake WM. Omega-3 index of Canadian adults. Health Rep. (2015) 26:3–11. [PubMed] [Google Scholar]

90. Harris WS. The omega-3 index as a risk factor for coronary heart disease. Am J Clin Nutr. (2008) 87:1997S–2002S. doi: 10.1093/ajcn/87.6.1997S, PMID: [PubMed] [CrossRef] [Google Scholar]

91. Marrugat J, Elosua R, Gil M. Epidemiology of sudden cardiac death in Spain. Rev Esp Cardiol. (1999) 52:717–25. doi: 10.1016/S0300-8932(99)74993-6 [PubMed] [CrossRef] [Google Scholar]

92. de Roos B, Wood S, Bremner D, Bashir S, Betancor MB, Fraser WD, et al.. The nutritional and cardiovascular health benefits of rapeseed oil-fed farmed salmon in humans are not decreased compared with those of traditionally farmed salmon: a randomized controlled trial. Eur J Nutr. (2021) 60:2063–75. doi: 10.1007/s00394-020-02396-w, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Ramprasath VR, Eyal I, Zchut S, Jones PJ. Enhanced increase of omega-3 index in healthy individuals with response to 4-week n-3 fatty acid supplementation from krill oil versus fish oil. Lipids Health Dis. (2013) 12:178. doi: 10.1186/1476-511X-12-178, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Grenon SM, Owens CD, Nosova EV, Hughes-Fulford M, Alley HF, Chong K, et al.. Short-term, high-dose fish oil supplementation increases the production of Omega-3 fatty acid-derived mediators in patients with peripheral artery disease (the OMEGA-PAD I trial). J Am Heart Assoc. (2015) 4:e002034. doi: 10.1161/JAHA.115.002034, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. European Food Safety Authority . Food supplements. (2018). Available at: https://www.efsa.europa.eu/en/topics/topic/food-supplements (Accessed October 16, 2022).

98. Lentjes MAH. The balance between food and dietary supplements in the general population. Proc Nutr Soc. (2019) 78:97–109. doi: 10.1017/s0029665118002525, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Yehuda S, Rabinovitz S, Mostofsky DI. Mixture of essential fatty acids lowers test anxiety. Nutr Neurosci. (2005) 8:265–7. doi: 10.1080/10284150500445795, PMID: [PubMed] [CrossRef] [Google Scholar]

100. Food Standards Agency (FSA) . Food supplements consumer research. (2018). Available at: https://www.food.gov.uk/sites/default/files/media/document/food-supplements-consumer-research.pdf (Accessed October 16, 2022).

101. Mishra S, Stierman B, Gahche JJ, Potischman N. Dietary supplement use among adults: United States, 2017-2018. NCHS Data Brief. (2021) 1–8. doi: 10.15620/cdc:101131 [PubMed] [CrossRef] [Google Scholar]

102. Iłowiecka K, Maślej M, Czajka M, Pawłowski A, Więckowski P, Styk T, et al.. Lifestyle, eating habits, and health behaviors among dietary supplement users in three European countries. Front Public Health. (2022) 10:892233. doi: 10.3389/fpubh.2022.892233, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Food Supplements Europe (FSE) . Consumer survey on food supplements in the EU. (2022). Available at: https://foodsupplementseurope.org/wp-content/uploads/2022/07/FSE-Consumer_Survey-Ipsos-2022.pdf (Accessed October 16, 2022).

104. Lordan R. Dietary supplements and nutraceuticals market growth during the coronavirus pandemic–implications for consumers and regulatory oversight. PharmaNutrition. (2021) 18:100282. doi: 10.1016/j.phanu.2021.100282, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Manson JE, Cook NR, Lee I-M, Christen W, Bassuk SS, Mora S, et al.. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. (2019) 380:23–32. doi: 10.1056/NEJMoa1811403, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al.. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. (2018) 7:CD003177. doi: 10.1002/14651858.CD003177.pub3, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al.. Cardiovascular risk reduction with Icosapent ethyl for hypertriglyceridemia. N Engl J Med. (2019) 380:11–22. doi: 10.1056/NEJMoa1812792, PMID: [PubMed] [CrossRef] [Google Scholar]

108. Nevigato T, Masci M, Caproni R. Quality of fish-oil-based dietary supplements available on the Italian market: a preliminary study. Molecules (Basel, Switzerland). (2021) 26:5015. doi: 10.3390/molecules26165015, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Leung KS, Galano JM, Durand T, Lee JC. Profiling of omega-polyunsaturated fatty acids and their oxidized products in Salmon after different cooking methods. Antioxidants (Basel, Switzerland). (2018) 7:96. doi: 10.3390/antiox7080096, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Echarte M, Zulet MA, Astiasaran I. Oxidation process affecting fatty acids and cholesterol in fried and roasted salmon. J Agric Food Chem. (2001) 49:5662–7. Epub 2001/11/21. doi: 10.1021/jf010199e, PMID: [PubMed] [CrossRef] [Google Scholar]

111. Floros S, Toskas A, Pasidi E, Vareltzis P. Bioaccessibility and oxidative stability of Omega-3 fatty acids in supplements, sardines and enriched eggs studied using a static in vitro gastrointestinal model. Molecules (Basel, Switzerland). (2022) 27:415. doi: 10.3390/molecules27020415, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Galli C, Rise P. Fish consumption, omega 3 fatty acids and cardiovascular disease. The science and the clinical trials. Nutr Health. (2009) 20:11–20. doi: 10.1177/026010600902000102 [PubMed] [CrossRef] [Google Scholar]

113. Petsini F, Fragopoulou E, Antonopoulou S. Fish consumption and cardiovascular disease related biomarkers: a review of clinical trials. Crit Rev Food Sci Nutr. (2019) 59:2061–71. doi: 10.1080/10408398.2018.1437388, PMID: [PubMed] [CrossRef] [Google Scholar]

114. Musa-Veloso K, Venditti C, Lee HY, Darch M, Floyd S, West S, et al.. Systematic review and meta-analysis of controlled intervention studies on the effectiveness of long-chain omega-3 fatty acids in patients with nonalcoholic fatty liver disease. Nutr Rev. (2018) 76:581–602. doi: 10.1093/nutrit/nuy022, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. O'Mahoney LL, Matu J, Price OJ, Birch KM, Ajjan RA, Farrar D, et al.. Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials. Cardiovasc Diabetol. (2018) 17:98. doi: 10.1186/s12933-018-0740-x, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Sekikawa A, Mahajan H, Kadowaki S, Hisamatsu T, Miyagawa N, Fujiyoshi A, et al.. Association of blood levels of marine omega-3 fatty acids with coronary calcification and calcium density in Japanese men. Eur J Clin Nutr. (2019) 73:783–92. doi: 10.1038/s41430-018-0242-7, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Feuchtner G, Langer C, Barbieri F, Beyer C, Dichtl W, Friedrich G, et al.. The effect of omega-3 fatty acids on coronary atherosclerosis quantified by coronary computed tomography angiography. Clin Nutr. (2021) 40:1123–9. doi: 10.1016/j.clnu.2020.07.016, PMID: [PubMed] [CrossRef] [Google Scholar]

118. Mori TA. Omega-3 fatty acids and cardiovascular disease: epidemiology and effects on cardiometabolic risk factors. Food Funct. (2014) 5:2004–19. doi: 10.1039/C4FO00393D, PMID: [PubMed] [CrossRef] [Google Scholar]

119. Skulas-Ray AC, Wilson PWF, Harris WS, Brinton EA, Kris-Etherton PM, Richter CK, et al.. Omega-3 fatty acids for the Management of Hypertriglyceridemia: a science advisory from the American Heart Association. Circulation. (2019) 140:e673–91. doi: 10.1161/CIR.0000000000000709, PMID: [PubMed] [CrossRef] [Google Scholar]

120. Moradi S, Alivand M, KhajeBishak Y, AsghariJafarabadi M, Alipour M, Chilibeck PD, et al.. The effect of omega3 fatty acid supplementation on PPARγ and UCP2 expressions, resting energy expenditure, and appetite in athletes. BMC Sports Sci Med Rehab. (2021) 13:48. doi: 10.1186/s13102-021-00266-4, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Irving GF, Freund-Levi Y, Eriksdotter-Jönhagen M, Basun H, Brismar K, Hjorth E, et al.. Omega-3 fatty acid supplementation effects on weight and appetite in patients with Alzheimer's disease: the omega-3 Alzheimer's disease study. J Am Geriatr Soc. (2009) 57:11–7. doi: 10.1111/j.1532-5415.2008.02055.x, PMID: [PubMed] [CrossRef] [Google Scholar]

122. Ramos EJ, Romanova IV, Suzuki S, Chen C, Ugrumov MV, Sato T, et al.. Effects of omega-3 fatty acids on orexigenic and anorexigenic modulators at the onset of anorexia. Brain Res. (2005) 1046:157–64. doi: 10.1016/j.brainres.2005.03.052, PMID: [PubMed] [CrossRef] [Google Scholar]

Eating more sardines instead of fish oil supplementation: Beyond omega-3 polyunsaturated fatty acids, a matrix of nutrients with cardiovascular benefits (2024)

FAQs

Eating more sardines instead of fish oil supplementation: Beyond omega-3 polyunsaturated fatty acids, a matrix of nutrients with cardiovascular benefits? ›

Micronutrients in sardines

Is eating sardines better than taking fish oil? ›

Sardines are a well-known, inexpensive source of n-3 PUFA and their consumption could reduce the need for n-3 PUFA supplementation. Moreover, sardines contain other cardioprotective nutrients, although further insights are crucial to translate a recommendation for sardine consumption into clinical practice.

What happens if you eat sardines every day? ›

While canned sardines are a low-mercury fish choice, Manaker notes, "eating them frequently—as in more than four times a week—may be a concern, since you could potentially be exposed to too much [mercury]."

How many cans of sardines for omega-3? ›

Sardines are small oily fish that pack a real flavour punch. The easiest way to buy sardines is in a can, with just one can providing around 2.7g of omega-3.

Can you get arsenic poisoning from eating sardines? ›

But far from being surreptitiously and continually fed small doses of arsenic like a character in a Victorian novel, it turns out Rogan's own go-to snack may have been the culprit: sardines. "You can get arsenic from sardines," Rogan told Musk.

What is the downside of sardines? ›

Sardines contain healthy nutrients like omega-3 fatty acids, vitamins, calcium and minerals. But they're also high in salt and calories, and have uric acid that isn't good for people with kidney problems or gout.

Are sardines high in mercury? ›

Sardines are small and contain a lot of oil. They are also a low-mercury fish, so it's safe to eat them if you are pregnant or breastfeeding. Since sardines are highly perishable (meaning they go bad quickly), they are most often found canned.

Why do I feel so good after eating sardines? ›

Sardines and heart health

Sardines provide significant amounts of omega-3 fatty acids (EPA and DHA). These fatty acids protect both your heart and your brain from disease. They do this by reducing blood pressure.

Who should not eat canned sardines? ›

Canned sardines contain a lot of sodium. One can has about 282 milligrams of sodium, which is roughly 12% of the daily recommended value. If you have high blood pressure, you should restrict sodium because it attracts water and adds to the volume of blood in the body.

What is the safest canned fish to eat? ›

The most healthful choices on this list that are available canned include anchovies, Atlantic mackerel, clams, crab, oysters, sardines, shrimp, and trout. Canned seafood brands offer varying levels of testing to ensure lower mercury levels.

What is the most unhealthy fish to eat? ›

Worst: Fish High in Mercury
  • Imported swordfish.
  • Imported marlin.
  • Shark.
  • Tilefish.

What fruit is very high in omega-3? ›

Kiwifruit, papaya, avocados, berries, and oranges contain a good amount of Omega-3 fatty acids. However, one should note that one can't completely rely on these fruits to fulfill their Omega-3 needs! Make sure you also include fish, walnuts, chia seeds, and flaxseeds among others in your daily diet.

Why do I feel sick after eating canned sardines? ›

When these types of fish are not properly refrigerated, bacteria begin to break down the flesh of the fish and histamines are formed. Histamines are heat-resistant; therefore, illness can occur even with fish that is properly canned or cooked.

Is it okay to eat a can of sardines every day? ›

Is it safe to eat sardines every day? Eating fish like sardines is an important part of a healthy diet, but as with any food, moderation is key. The FDA recommends eating two to three servings of sardines per week. “It's smart to vary your seafood sources instead of eating the same type each week,” says Largeman-Roth.

Do sardines get parasites? ›

“The Chemistry Department's analysis found that the sardines were contaminated with Anisakis simplex worms, a type of parasite,” he said in a statement on Thursday (April 25).

Is it better to eat fish or take fish oil supplements? ›

It is always recommended to eat foods for nutrition rather than depending on the supplements. So, consider eating fish and other seafood as a healthy strategy. The benefits of eating seafood do not come entirely from omega-3 fats. So, ideally, fish oil pills should not be considered an alternative to eating fish.

Are sardines the healthiest fish you can eat? ›

The tiny, inexpensive sardine is making it onto many lists of superfoods, and for good reason. It packs nearly 300 mg of omega-3 fats per 3 ounces and is one of the very few foods that's naturally high in vitamin D. It's also one of the few foods naturally high in calcium, packing 25% of your daily needs per serving.

What is better than fish oil? ›

Krill Oil May Improve Heart Health More Than Fish Oil

It found that both fish oil and krill oil improved several heart disease risk factors. However, they also found that krill oil was more effective than fish oil at lowering blood sugar, triglycerides and “bad” LDL cholesterol.

Top Articles
Latest Posts
Article information

Author: Van Hayes

Last Updated:

Views: 6198

Rating: 4.6 / 5 (66 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Van Hayes

Birthday: 1994-06-07

Address: 2004 Kling Rapid, New Destiny, MT 64658-2367

Phone: +512425013758

Job: National Farming Director

Hobby: Reading, Polo, Genealogy, amateur radio, Scouting, Stand-up comedy, Cryptography

Introduction: My name is Van Hayes, I am a thankful, friendly, smiling, calm, powerful, fine, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.